您的位置:网站首页 > Ansys教程

ANSYS中混凝土的计算问题

时间:2011-01-25 10:48:06 来源:未知

一、关于模型
钢筋混凝土有限元模型根据钢筋的处理方式主要分为三种,即分离式、分布式和组合式模型。考虑钢筋和混凝土之间的粘结和滑移,则采用引入粘结单元的分离式模型;假定混凝土和钢筋粘结很好,不考虑二者之间的滑移,则三种模型都可以;分离式和分布式模型适用于二维和三维结构分析,后者对杆系结构分析比较适用。裂缝的处理方式有离散裂缝模型、分布裂缝模型和断裂力学模型,后者目前尚处研究之中,主要应用的是前两种。离散裂缝模型和分布裂缝模型各有特点,可根据不同的分析目的选择使用。随着计算速度和网格自动划分的快速实现,离散裂缝模型又有被推广使用的趋势。
ANSYS而言,她可以考虑分离式模型(solid65+link8,认为混凝土和钢筋粘结很好,如要考虑粘结和滑移,则可引入弹簧单元进行模拟,比较困难!),也可采用分布式模型(带筋的solid65)。而其裂缝的处理方式则为分布裂缝模型。


二、关于本构关系

混凝土的本构关系可以分为线弹性、非线性弹性、弹塑性及其它力学理论等四类,其中研究最多的是非线性弹性和弹塑性本构关系,其中不乏实用者。混凝土破坏准则从单参数到五参数模型达数十个模型,或借用古典强度理论或基于试验结果等,各个破坏准则的表达方式和繁简程度各异,适用范围和计算精度差别也比较大,给使用带来了一定的困难。

ANSYS而言,其问题比较复杂些。

1 ANSYS
混凝土的破坏准则与屈服准则是如何定义的?

采用tb, concr, matnum则定义了W-W破坏准则(failure criterion),而非屈服准则(yield criterion)W-W破坏准则是用于检查混凝土开裂和压碎用的,而混凝土的塑性可以另外考虑(当然是在开裂和压碎之前)。理论上破坏准则(failure criterion)和屈服准则(yield criterion)是不同的,例如在高静水压力下会发生相当的塑性变形,表现为屈服,但没有破坏。而工程上又常将二者等同,其原因是工程结构不容许有很大的塑性变形,且混凝土等材料的屈服点不够明确,但破坏点非常明确。

定义tb,concr matnum后仅仅是定义了混凝土的破坏准则和缺省的本构关系,即W—W破坏准则、混凝土开裂和压碎前均为线性的应力应变关系,而开裂和压碎后采用其给出的本构关系。但屈服准则尚可另外定义(随材料的应力应变关系,如tb,MKIN,则定义的屈服准则是Von Mises,流动法则、硬化法则也就确定了)

2
定义tb,concr后可否定义其它的应力应变关系

当然是可以的,并且只有在定义tb,concr后,有些问题才好解决。例如可以定义tb,miso,输入混凝土的应力应变关系曲线(多折线实现),这样也就将屈服准则、流动法则、硬化法则等确定了。

这里可能存在一点疑问,即ANSYS中的应力应变关系是拉压相等的,而混凝土材料显然不是这样的。是的,因为混凝土受拉段非常短,认为拉压相同影响很小,且由于定义的tb,concr中确定了开裂强度,所以尽管定义的是一条大曲线,但应用于受拉部分的很小。


三、具体的系数及公式

1
定义tb,concr时候的两个系数如何确定?

一般的参考书中,其值建议先取为0.3~0.5(江见鲸),原话是在没有更仔细的数据时,不妨先取0.3~0.5进行计算,足见此0.3~0.5值的可用程度。根据我的经验和理由,建议此值取大些,即开裂的剪力传递系数取0.5,(定要>0.2)闭合的剪力传递系数取1.0。支持此说法的还有现行铁路桥规的抗剪计算理论,以及原公路桥规的容许应力法的抗计剪计算。

2
定义混凝土的应力应变曲线

单向应力应变曲线很多,常用的可参考国标混凝土结构规范,其中给出的应力应变曲线是二次曲线+直线的下降段,其参数的设置按规范确定即可。当然如有实测的应力应变曲线更好了。


四、关于收敛的问题

ANSYS
混凝土计算收敛(数值)是比较困难的,主要影响因素是网格密度、子步数、收敛准则等,这里讨论如下。

1
网格密度:网格密度适当能够收敛。不是网格越密越好,当然太稀也不行,这仅仅是就收敛而言的,不考虑计算费用问题。但是究竟多少合适,没有找到规律,只能靠自己针对情况慢慢试算。

2
子步数:NSUBST的设置很重要,设置太大或太小都不能达到正常收敛。这点可以从收敛过程图看出,如果F范数曲线在[F]曲线上面走形的很长,可考虑增大nsubst。或者根据经验慢慢调正试算。

3
收敛精度:实际上收敛精度的调正并不能彻底解决收敛的问题,但可以放宽收敛条件以加速吧。一般不超过5%(缺省是0.5%),且使用力收敛条件即可。

4
混凝土压碎的设置:不考虑压碎时,计算相对容易收敛;而考虑压碎则比较难收敛,即便是没有达到压碎应力时。如果是正常使用情况下的计算,建议关掉压碎选项;如果是极限计算,建议使用concrMISO且关闭压碎检查;如果必设压碎检查,则要通过大量的试算(设置不同的网格密度、NSUBST)以达到目的,但也很困难。

5
其他选项:如线性搜索、预测等项也可以打开,以加速收敛,但不能根本解决问题。

6
计算结果:仅设置concr,不管是否设置压碎,其一般P-F曲线接近二折线;采用concr+misoP-F曲线与二折线有差别,其曲线形状明显是曲线的。


*******************************************************************************
例题
1
!----------------------------------------------------
!
题目:钢筋混凝土简支梁模拟计算

!
方法:分离式;solid65
link8
!
材料:混凝土采用concr和钢筋为弹性材料,但不考虑压碎

!---------------------------------------------------
!
为方便,假定钢筋置于梁底两侧
.
!===================================================
/config,nres,2000
/prep7
!
定义单元及其材料特性等

rd0=20.0 !
钢筋直径

et,1,solid65
et,2,link8
mp,ex,1,33e3
mp,prxy,1,0.20
r,1
hntra=28
hntrl=2.6
tb,concr,1
tbdata,,0.7,1.0,hntrl,-1
mp,ex,2,2.1e5
mp,prxy,2,0.30
r,2,acos(-1)*0.25*rd0*rd0
!
定义梁体即单元划分

blc4, , ,100,200,3000
/view,1,1,1,1
/ang,1
gplot
!
定义网分时边长控制

lsel,s,loc,z,1,2999
lsel,r,loc,y,0
latt,2,2,2
lesize,all,,,20 !
钢筋网格数目

lmesh,all
lsel,s,loc,z,0
lesize,all,,,4 !
截面上的网格数目
4x4
vsel,all
vatt,1,1,1
mshape,0,3d
mshkey,1
vmesh,all
allsel,all
finish
/solu
!
施加约束

lsel,s,loc,z,0
lsel,r,loc,y,
0
dl,all,,uy
dl,all,,uz
lsel,all
lsel,s,loc,z,3000
lsel,r,loc,y,
0
dl,all,,uy
lsel,all
ksel,s,loc,x,0
ksel,r,loc,y,0
dk,all,ux
allsel,all
!
施加荷载
qmz=0.3
asel,s,loc,y,200
sfa,all,1,pres,qmz
allsel,all
nsubst,40
outres,all,all
time,qmz*10
neqit,40
solve
finish
/post1
pldisp,1
etable,zxyl,ls,1
plls,zxyl,zxyl,1
finish
/post26
nsol,2,33,u,y
prod,3,1,,,,,,1/100
prod,4,2,,,,,,-1
xvar,4
plvar,3